76 research outputs found

    An introduction to Multitrace Formulations and Associated Domain Decomposition Solvers

    Get PDF
    Multitrace formulations (MTFs) are based on a decomposition of the problem domain into subdomains, and thus domain decomposition solvers are of interest. The fully rigorous mathematical MTF can however be daunting for the non-specialist. We introduce in this paper MTFs on a simple model problem using concepts familiar to researchers in domain decomposition. This allows us to get a new understanding of MTFs and a natural block Jacobi iteration, for which we determine optimal relaxation parameters. We then show how iterative multitrace formulation solvers are related to a well known domain decomposition method called optimal Schwarz method: a method which used Dirichlet to Neumann maps in the transmission condition. We finally show that the insight gained from the simple model problem leads to remarkable identities for Calderon projectors and related operators, and the convergence results and optimal choice of the relaxation parameter we obtained is independent of the geometry, the space dimension of the problem{\color{black}, and the precise form of the spatial elliptic operator, like for optimal Schwarz methods. We illustrate our analysis with numerical experiments

    Nonlinear Preconditioning: How to use a Nonlinear Schwarz Method to Precondition Newton's Method

    Get PDF
    For linear problems, domain decomposition methods can be used directly as iterative solvers, but also as preconditioners for Krylov methods. In practice, Krylov acceleration is almost always used, since the Krylov method finds a much better residual polynomial than the stationary iteration, and thus converges much faster. We show in this paper that also for non-linear problems, domain decomposition methods can either be used directly as iterative solvers, or one can use them as preconditioners for Newton's method. For the concrete case of the parallel Schwarz method, we show that we obtain a preconditioner we call RASPEN (Restricted Additive Schwarz Preconditioned Exact Newton) which is similar to ASPIN (Additive Schwarz Preconditioned Inexact Newton), but with all components directly defined by the iterative method. This has the advantage that RASPEN already converges when used as an iterative solver, in contrast to ASPIN, and we thus get a substantially better preconditioner for Newton's method. The iterative construction also allows us to naturally define a coarse correction using the multigrid full approximation scheme, which leads to a convergent two level non-linear iterative domain decomposition method and a two level RASPEN non-linear preconditioner. We illustrate our findings with numerical results on the Forchheimer equation and a non-linear diffusion problem

    Optimized schwarz methods for Maxwell equations with discontinuous coefficients

    Get PDF
    We study non-overlapping Schwarz methods for solving time-harmonic Maxwell’s equations in heterogeneous media. We show that the classical Schwarz algorithm is always divergent when coefficient jumps are present along the interface. In the case of transverse magnetic or transverse electric two dimensional formulations, convergence can be achieved in specific configurations only. We then develop optimized Schwarz methods which can take coefficient jumps into account in their transmission conditions. These methods exhibit rapid convergence, and sometimes converge independently of the mesh parameter, even without overlap. We illustrate our analysis with numerical experiments

    Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps

    Get PDF
    Coarse spaces are instrumental in obtaining scalability for domain decomposition methods for partial differential equations (PDEs). However, it is known that most popular choices of coarse spaces perform rather weakly in the presence of heterogeneities in the PDE coefficients, especially for systems of PDEs. Here, we introduce in a variational setting a new coarse space that is robust even when there are such heterogeneities. We achieve this by solving local generalized eigenvalue problems in the overlaps of subdomains that isolate the terms responsible for slow convergence. We prove a general theoretical result that rigorously establishes the robustness of the new coarse space and give some numerical examples on two and three dimensional heterogeneous PDEs and systems of PDEs that confirm this property

    A Domain Decomposition Approach to Finite Volume Solutions of the Euler Equations on Triangular Meshes

    Get PDF
    we report on our recent efforts on the formulation and the evaluation of a domain decomposition algorithm for the parallel solution of two-dimension- al compressible inviscid flows. The starting point is a flow solver for the Euler equations which is based on a combined finite element/finite volume formulation on unstructured triangular meshes for the spatial discretiz- ation. Time integration of the resulting semi-discrete equations is obtained using a linearized backward Euler implicit scheme. As a result, each pseudo time step requires the solution of a sparse linear system for the flow variables. In this study, a non-overlapping domain decomposition algorithm is used for advancing the solution at each implicit time step. First, we formulate an additive Schwarz algorithm using appropriate matching conditions at the subdomain interfaces. In accordance with the hyperbolic nature of the Euler equations, these transmission conditions are Dirichlet conditions for the characteristic variables corresponding to incoming waves. Then, we introduce interface operators that allow to express the domain decomposition algorithm as a Richardson type iteration on the interface unknowns. Algebraically speaking, the Schwarz algorithm is equivalent to a Jacobi iteration applied to a linear system whose matrix has a block structure. A substructuring technique can be applied to this matrix in order to obtain a fully implicit scheme in terms of interface unknowns. In our approach, the interface unknowns are numerical (normal) fluxes

    A Non-Overlapping Domain Decomposition Method for Solving the Navier-Stokes Equations on Unstructured Triangular Meshes

    Get PDF
    we report on our recent efforts on the formulation and the evaluation of a non-overlapping domain decomposition method for the parallel solution of two-dimensional compressible viscous flows. This work extends a previous study [11] which was concerned with the design of a domain decomposition solver for the Euler equations discretized on unstructured triangular meshes. As in [11], the method relies on the formulation of an additive Schwarz type algorithm where the interface conditions express the continuity of the normal flux components. The starting point is a flow solver for the Navier-Stokes equations which is based on a combined finite element/finite volume formulation on unstructured triangular meshes for the spatial approxima- tion. Time integration of the resulting semi-discrete equations is performed by using a linearized backward Euler implicite scheme. As a result, each pseudo time step requires the solution of a sparse linear system for the flow variables. In this study, a non-overlapping domain decomposition algorithm is used for advancing the solution at each implicit time step. Algebraically speaking, the Schwarz algorithm is equivalent to a Jacobi iteration applied to a linear system whose matrix has a block structure. A substructuring technique can be applied to this matrix in order to obtain a fully implicit scheme in terms of interface unknowns. In our approach, the interface unknowns are numerical fluxes

    An introduction to multitrace formulations and associated domain decomposition solvers

    Get PDF
    Multi-trace formulations (MTFs) are based on a decomposition of the problem domain into subdomains, and thus domain decomposition solvers are of interest. The fully rigorous mathematical MTF can however be daunting for the non-specialist. The first aim of the present contribution is to provide a gentle introduction to MTFs. We introduce these formulations on a simple model problem using concepts familiar to researchers in domain decomposition. This allows us to get a new understanding of MTFs and a natural block Jacobi iteration, for which we determine optimal relaxation parameters. We then show how iterative multi-trace formulation solvers are related to a well known domain decomposition method called optimal Schwarz method: a method which used Dirichlet to Neumann maps in the transmission condition. We finally show that the insight gained from the simple model problem leads to remarkable identities for Calderón projectors and related operators, and the convergence results and optimal choice of the relaxation parameter we obtained is independent of the geometry, the space dimension of the problem, and the precise form of the spatial elliptic operator, like for optimal Schwarz methods. We illustrate our analysis with numerical experiments

    Scalable Computational Algorithms for Geo-spatial Covid-19 Spread in High Performance Computing

    Full text link
    A nonlinear partial differential equation (PDE) based compartmental model of COVID-19 provides a continuous trace of infection over space and time. Finer resolutions in the spatial discretization, the inclusion of additional model compartments and model stratifications based on clinically relevant categories contribute to an increase in the number of unknowns to the order of millions. We adopt a parallel scalable solver allowing faster solutions for these high fidelity models. The solver combines domain decomposition and algebraic multigrid preconditioners at multiple levels to achieve the desired strong and weak scalability. As a numerical illustration of this general methodology, a five-compartment susceptible-exposed-infected-recovered-deceased (SEIRD) model of COVID-19 is used to demonstrate the scalability and effectiveness of the proposed solver for a large geographical domain (Southern Ontario). It is possible to predict the infections up to three months for a system size of 92 million (using 1780 processes) within 7 hours saving months of computational effort needed for the conventional solvers

    Two-level DDM preconditioners for positive Maxwell equations

    Get PDF
    In this paper we develop and analyse domain decomposition methods for linear systems of equations arising from conforming finite element discretisations of positive Maxwell-type equations. Convergence of domain decomposition methods rely heavily on the efficiency of the coarse space used in the second level. We design adaptive coarse spaces that complement the near-kernel space made of the gradient of scalar functions. This extends the results in [2] to the variable coefficient case and non-convex domains at the expense of a larger coarse space

    Parallel preconditioners and high order elements for microwave imaging

    Get PDF
    This paper combines the use of high order finite element methods with parallel preconditioners of domain decomposition type for solving electromagnetic problems arising from brain microwave imaging. The numerical algorithms involved in such complex imaging systems are computationally expensive since they require solving the direct problem of Maxwell's equations several times. Moreover, wave propagation problems in the high frequency regime are challenging because a sufficiently high number of unknowns is required to accurately represent the solution. In order to use these algorithms in practice for brain stroke diagnosis, running time should be reasonable. The method presented in this paper, coupling high order finite elements and parallel preconditioners, makes it possible to reduce the overall computational cost and simulation time while maintaining accuracy
    corecore